ENERGY, ENVIRONMENT& GREEN AUDIT REPORT

PART-B: ENVIRONMENT AUDIT REPORT

ESTIMATION OF CO₂ EMISSION & NEUTRALIZATION (ELECTRICITY, DIESEL, LPG & MATURETREES)

YOJO NETWORK & TRAINING CENTER

(Registered Audit Agencies)

Ist Floor, Devas Comples, Mutt St

Kumbakonam – 612 001 vojo network Mobile:+91 9047205733 GST no: 33AYXPP0304R1ZT

E-mail: yojoauditnetwork@gmail.com
(Chennai + Kumbakonam + Karaikai)

1.2 : Assessment of Annual Energy Usage:

Table-2 Shows the types of energy carriers used for the irregular operation in the college campus along with application area and their source.

Table-2: Energy Carriers, Application area and their sources used for College Operation.

S. No.	Type of Energy Carrier	Application Area	Source of
			Procurement
1.	Electricity LT Service for	Powering to all electrical &	From TANGEDCO
	College	electronic/HVAC/Motors/Pumps	Captive power plant
2.	Diesel	Transport vehicles and Diesel	
		Generator(Captive Generation)	From authorized distributor
3.	Liquefied Petroleum		
	Gas(LPG)	Used for cooking application	·
4.	Coconut Bat(Agri Bio-fuel)		Internally generated+
			Locally purchased
5.	Mature Trees	Nearly 259 Nos of different variet	ies with more than 20 years
		old.	•
6.	Bio gas Plat	From food and vegetable waste ger	nerated in the hostels

1.3: Environmental System: CO2 Balance Sheet:

The following tables provide the balance sheet indicating various energy carriers associated with the regular activities and their CO_2 mapping.

Table-3: Environmental System: CO₂ Balance Sheet (2018-19)

S.	Annual Energy C	onsumption & CO2 En	nission	Annual CO ₂ N	eutralization	
No Desci	Description	Usage	CO ₂ Emission (Tons)	Description	Usage	CO, Neutralized (Tons)
1.	Diesel	4375 Liters	12.8	Mature	210313	
2.	Electrical Energy	41,124 kwh	79.7	Trees	210 No's	12.9
3.	Wood	15.09 Tons	25.5			,
4.	LPG	2,103 kg	16.6	Biogas	· .	-
	Total Er	nission	134.7	Total-N	Neutralized	12.9

Table-4: Environmental System: CO₂Balance Sheet (2019-20)

s.	Annual E	nergy Consumption &	CO ₂ Emission	Annual CO2 Neutralization			
No	Description	Usage	CO ₂ Emission (Tons)	Description	Usage ,	CO₂ Neutralized (Tons)	
1.	Diesel	4,451 Liters	13.4	Mature Trees	185 No's	10.5	
2.	Electrical Energy	47195.3 kWh	98.4	rrees			
3.	Wood	11.5Tons	29.1	Biogas	-	-	
4.	LPG	1,714 kg	15.9				
	Total Emiss	sion	155.8	Total- Ne	ntralized	10.5	

Balance CO2 to be Neutralized = 155.8 Tons/Annum & Per Capita CO2 Consumption = 0.19 Tons Annum²

Sri Raaja Raajan College of Engg. & Toch. Amaravathipudur, Naraikudi - 630 301 Sivagangai Dist. Tamil Nadu

Table-5: Environmental System: CO₂ Balance Sheet (2020-21)

		Consumption & C		Annual CO2	Neutralization	1
No.	Description	Usage	CO ₂ Emission (Tons)	Description	Usage	CO ₂ Neutralized (Tons)
1.	Diesel	4974 Liters	11.2	Mature Trees	185 No's	10.6
2.	Electrical Energy	47,321.2 kWh	172.5	Hees		
3.	Wood	09.6Tons	12.6	Biogas		
4.	LPG	1,816kg	11.5			
		Emission	207.8		- Neutralized	10.6
\vdash	Balance CO2	to be Neutralized	= 207.8 Tons	Annum & P	er Capita CO2	Consumption

 $= 10.6 \text{ Tons } / \text{ Annum}^3$

Sri Raaja Raajan Cohuse (ci 1763) (k. 1874) Amarayathipudus, Karataudi - 630) (Siyagar pai Dise Tamil Hadu

YOJO NETWORK & TRAINING CENTER

(Registered Audit Agencies) Ist Floor, Devas Comples, Mutt St Kumbakonam – 612 001

YOJO NETWORK Mobile: +91 9047205733

GST no: 33AYXPP0304R1ZT E-mail: yojoauditnetwork@gmail.com

E-mail: <u>yojoauditnetwork(algmail.com</u> (Chennai • Kumbakonam • Karaikal)

Table-6: Environmental System: CO₂ Balance Sheet (2021-22)

s.	Annual Energy Emission	Consumption &	Annual CO2 Neutralization			
No ·	Description	Usage	CO ₂ Emission (Tons)	Description	Usage	CO ₂ Neutralized (Tons)
1.	Diesel	4231 Liters	12.5	Mature	170 No's	10.2
2.	Electrical Energy	48,156.5 kWh	167.1	Trees		
3.	Wood	19.2 Tons	17.1	Biogas		
4.	LPG	16757kg	12.8			
	Total En	nission	209.5	Total- 1	Veutralized	10.2

Balance CO_2 to be Neutralized = **209.5** Tons / Annum & Per Capita CO_2 Consumption = 10.2 Tons / Annum⁴

PRÍNCIPAL

Sri Raaja Raajan College of Engg. & Tech., Amaravathipudur, Karaikudi - 630 301 Siyagangai Dist. Tamil Nadu

Table-7: Environmental System: CO₂ Balance Sheet (2022-23)

S.	Annual Energ	y Consumptio	on & CO2	Annual CO2	Neutralizatio	on	
No.	Description	Usage	CO ₂ Emission (Tons)	Description	Usage	CO ₂ Neutralized (Tons)	
1.	Diesel	1195 Litres	5.1	Mature	197 No's	14.1	
2.	Electrical Energy	21,115.4 kWh	160.1	Trees			
3.	Wood	3.8 Tons	5.2	Biogas			
4.	LPG	210 kg	0.9	Jorogus			
Total Emission 171.3 Total-Neutralized					14.1		
	Balance CO ₂ to be Neutralized = 171.3 Tons / Annum & Per Capita CO ₂ Consumption = 14.1 Tons / Annum ⁵						

Note: Due to COVID Lock down; all the energy consumption during 2019-20 & 20-21 are less 1.3: Calculation Table:

For Electricity = $[k \text{ Whx } \frac{0.82 \text{ kg of CO}_2 \text{ emission}}{}]$
- kWh
For Diesel = [Diesel Consumption (Liter) $x^{2.64\text{kgofCO2emission}}$]
Liter of Fuel Consumption
For LPG = [LPG Consumption (kg) $x^{3.0 \text{ kg of CO}_2 \text{ emission}}$]
Kg of LPG Consumption
A mature tree is able to absorb nearly CO ₂ at a rate of 21.8 kg / annum; hence total CO ₂ to be
neutralized.
$ls (21.8 \times 1009) = 22.0$
Tons 1,000 Anum

PRINCIPAL

Sri Raaja Raajan College of Engg. & Tech
Amaravathipudur, Karaikudi - 630 301

Sivagangai Dist. Tamil Nadu

YOJO NETWORK & TRAINING CENTER (Registered Audit Agencies) Ist Floor, Devas Comples, Mutt St

Kumbakonam - 612 001 Mobile: +91 9047205733 GST no: 33.4YXPP0304R1ZT E-mail: yopoanditnetwork@gmail.com (Chennai • Kumbakonam • Karaikal)

1.3 Observations:

- From the above table; it is evident that the college is now trying to neutralize their CO₂ emission through various initiatives like i) Installation of roof top solar PV system & solar thermal hot water generation (cooking & bathing application), ii) Reduction of LPG consumption, iii) Planting more number of trees and iv) implementing various energy conservation measures (FTL to LED conversion, conventional fan to BLDC fans, Energy efficient motor replacement, judicious use of all types of energy etc.,)
- Reduction of electricity consumption by replacing the entire boiler cooking system into LPG based or Wood pellets which reduces considerable amount of amount of CO₂. The management has to think and go for fuel substitution

1.3: References:

- 1. https://ecoscore.be/en/info/ecoscore/co2
- 2. http://www.tenmilliontrees.org/trees/#:~:text=A%20mature%20tree%20absorbs%20carbon,the%20average%20car's%20annual%20mileage.

KARAIKUDI KARAIKUDI

PRINCIPAL

Sri Raaja Raaran College of Engg. St Tech
Amaravathibudur, Nararkudi - 630 301

Siyagangai Dist. Tamil Nadu

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART - B: ENVIRONMENT AUDIT REPORT

TRANSPORT & REFRIGERANT GASES IN AC SYSTEM

YOJO NETWORK & TRAINING CENTER

(Registered Audit Agencies) Ist Floor, Devas Comples, Mutt St Kumbakonam – 612 001

voio NETWORK Mobile: +91 9047205733

GST no: 33AYXPP0304R1ZT E-mail: yojoauditnetwork@gmail.com (Chennai • Kumbakonam • Karaikal)

1.3: List of Transport Vehicles:

Pollution level of all vehicles is regularly monitored and is maintained within the prescribed limit since the college is committed to provide green environment for better atmosphere.

All the transport vehicles are having pollution certificates and maintaining the emission level within the Pollution Control Board limits

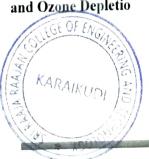
The no. of vehicles available in the college campus isrepresented in Table-8.

Table-8: List of Transporting Vehicles available in the College

Туре	of	Quantity	Purpose
Vehicle			
Bus		15	Students & Faculty Transportation
Jeep		02	Office and Administrative Works
Car		03	Good Transportation
	Vehicle Bus Jeep	Vehicle Bus Jeep	Vehicle Bus 15 Jeep 02

YOJO NETWORK & TRAINING CENTER

(Registered Audit Agencies)
Ist Floor, Devas Comples, Mutt St
Kumbakonam – 612 001


YOIO NETWORK Mobile: +91 9047205733

GST no: 33AYXPP0304R1ZT
E-mail: yojoauditnetwork@gmail.com

(Chennai ♦ Kumbakonam ♦ Karaikal)

1.3: List of Air Conditioning System along with its Refrigerant:

Most of the AC system has R-22 as refrigerant which has Global Warning Potential (GWP) of 1,810 and Ozone Depletion Potential (ODP) is Medium. Some of the newly installed AC system are having R-32 as refrigerant which has Global Warning Potential (GWP) of 675 and Ozone Depletio

(See rules 115 (2))

Collution Under Control Certificate

Authorised By

State Transport Department

Date

18/05/2022

Time

16:09:04 PM

Validity upto

17/11/2022

Continuate St. No.

Registration No.

Date of Registration

Month & Year of Manufacturing

Valid Mobile Number

Emession Norms

Farmi

PUC Code

GSTIN

Fees

Mil. observation

TN06300150011404

TN63A20798

21/Sep/2011

June-2011 ****************

BHARAT STAGE I

DIESEL

TN0630015

Shree Amman Emission Testing Certre
Autility MANNOSCHISSICAL SPEculie)
(Approved by Covil of Tamil Nadu)

With San Company to the Company of t Vehicle Photo with Registration plate Kars kedi - 1. Phone: 224709

60 mm x 30 mm

			No. of Manufacture and Association and Associa	
Sr. No.	Pollutant (as applicable)	Units (as applicable)	Emission limits	Measured Value (upto 2 decimal places)
1	2	3	4	. 5
	Carbon Monoxide (CO)	percentage (%)		
Idling Emissions	Hydrocarbon, (THC/HC)	ppm		
	co	percentage (%)		•
High idling emissions	RPM	RPM	2500 ± 200	
	Lambda		1 ± 0.03	
Smoke Density	Light absorption coefficient	1/metre	2.45	0.46

This PUC certificate is system generated through the national register of motor vehicles and does not require any signature.

to link their mobile numbers to registered vehicle by logging to d Equature with stomp of PUC operator

Shree Amman Emission Testing Contro Authorestion No.3/SVG/2001 (Approved by Govt, of Tamil Nadu) No.5/24 Subramanapurani Lis Sirent South Lists Karaikudi - 1. Phone:224709

[See rules 115 (2)]

Collution Under Control Certificate

Authorised By

State Transport Department

Date 18/05/2022

Time 16:13:28 PM

Validity upto 17/11/2022

Certificate SL. No.

TN06300150011405 Registration No.

TN63AY9439 Date of Registration

08/Oct/2012

Month & Year of Manufacturing August-2012 Valid Mobile Number *****1356

Emission Norms BHARAT STAGE I

Fuel DIESEL

PUC Code TN0630015

GSTIN

Shree Amaga Emission Testing Centre Fees

MIL observation (Approved by Govt.

Vehicle Photo with Registration plate 6/24, Subramanispurary Karaikud

60 mm x 30 mm

704			
Sr. No.	Pollutant (as applicable)	Units (as applicable)	Emission limits
1	2	3	4
and the second s	Carbon Monoxide (CO)	percentage (%)	
Idling Emissions	Aydrocarbon, (THC/HC)	ppm	
137 K40,	CO	percentage (%)	
High idling (1) emissions	RPM	RPM	2500 ± 200
10010 a 10010	Lambda	-	1 ± 0.03
Smoke Density	Light absorption coefficient	1/metre	2.45

This PUC certificate is system generated through the national register of motor v not require any signature

n Potential (ODP) is Zero.

Table-9: List of Multi-variant AC System available in the College

S. No.	Tonnage Capacity (TR)	Quantity	
1,	1,5	10 Nos	
2.	2.0	06 Nos	
	Total	16 Nos	

Note: The most environment-friendly refrigerants that are available in Indian market currently are "R-290" and "R-600A". They are Hydrocarbons and their chemical names are "Propane" for R-290 and "Iso-Butane" for R-600A

They are completely halogen free, have no ozone depletion potential and are lowest in terms of global warming potential. They also have high-energy efficiency but are highly flammable as they are hydrocarbons. (Kindly refer: https://www.bijlibachao.com/air-conditioners-and-refrigerators.html).

Refrigerant	Global Warming Potential	Ozone Depletion Potential
R-22	1810	, Medium
R-410A	2088	Zero
R-32	675	Zero
R-134A	1430	Zero
R-290	3	Zero
OLLIGE OFFING	3	Zero

ENERGY, ENVIRONMENT & GREEN AUDIT REPORT

PART-B: ENVIRONMENT AUDIT REPORT

USAGE OF CHEMICALS, SALTS & ACIDS
.
(STORAGE, HANDLING & BEST OPERATING PRACTICES)

(Registered Audit Agencies)

Ist Floor, Devas Comples, Mutt St

Kumbakonam – 612 001

WOO NETWORK Mobile: +91 9047205733

GST no: 33.4 YXPP9304021ZT

E-mail pojoandiinatworkidigmail.com (Chennal • Kumbakanam • Karalkal)

1.3: Handling of Chemicals / Salts / Acids used in the Laboratories:

- The science departments use chemicals for experimental applications and are having strict safety rules as follows;
- Well trained faculty and lab assistants who have knowledge about the hazardous nature of each and every chemical are only allowed to handle the chemicals safely.
- · Strictly follow the manufacturer's instruction on the container in order to prevent accidents.
- Volatile or highly odorous chemicals, furning acids are stored in a ventilated area Chemicals
 are stored in eye level and never on the top shelf of storage unit.
- All stored chemicals; especially flammable liquids are kept away from heat and direct sunlight. Reactive chemicals are not stored closely.
- Hazardous and corrosive chemicals are kept on sand platform to avoid corrosion.
 First aid box and fire extinguishers are readily available in the laboratory.

1.3 Storage of Chemicals / Salts / Acids:

- Less concentrated chemicals, salts and acids are stored in proper racks; cupboard sand high
 concentrated acids are stored in separate area filled with sand.
- Most of the chemicals, salts and acids used in the science departments are inorganic in nature and no harmful effects are created during the experiment process.
- However after completion of each experiment, the wastes are washed in the water sink and are rooted to common STP.
- Only trained teaching and non-teaching staffs are handling the chemicals and also they
 are well trained to handle any abnormal situations.
- Laboratories with chemicals are well ventilated with proper emergency exits. Adequate
 and correct sequence of fire extinguishers is placed near all the laboratories.

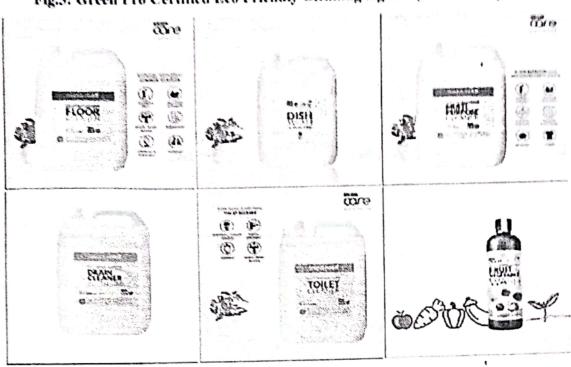
Fig.2: Storage of Chemicals /Salts /Acids& Laboratory Equipments (Rack & Sand Bed)

GST no: 33AYXPP0304R1ZT E-mail: yojoauditnetwork@gmail.com (Chennai • Kumbakonam • Karaikal)

1.3 Use of Chemical for Vessels & Floor Cleaning:

In order to maintain hygiene in the College campus; the administration regularly clean the floor sand restrooms. In addition to this, the hostel management has to monitor the cleaning of vessels, kitchen floor, dining hall, store room and gas station. Table-10 shows the cleaning agents used to clean the above mentioned area;

Table-10: Cleaning Agents used for Floor and Vessel Cleaning


S.	Cleaning	Application
No.	Agent	
1	Soap & Washing Power	Vessel Cleaning
2	Soap Oil & Bleaching Powder	Floor Cleaning

1.3: Recommendations: Eco Friendly - Green Cleaning Agents:

- On an average; the cleaning agents used today have about 62 harmful chemicals like
 Paraben, Phosphates or Chlorides. A lot of them are multi-purpose cleaners
- It is recommended to use natural ingredients like orange peel extract & vinegar. It leaves a
 mild and pleasant fragrance after use. The formula is free from all harmful chemicals &
 toxins. It is pH-neutral, gentle on the skin as well as on the surface where it is used
- Also these products are IGBC GreenPro certified. GreenPro is a mark of guarantee that the
 product is environment friendly throughout its life cycle
- Fig.3 shows the sample eco-friendly Green Pro certified cleaning agents.

Fig.3: Green Pro Certified Eco Friendly Cleaning Agents (ZERODER)

PRINCIPAL Sri Raaja Raajan College of Engg. & Tech.. Amaravathipudur, Karaikudi - 630 301 Amaravathipudur, Karaikudi Nadu Sivagangai Dist. Tamil Nadu

Dr. A. ARUMUGAM PROFESSOR & DEPARTMENT OF BOTANY ALAGAPPA UNIVERSITY KARAIKUDI - 630 003. TAMIL NADU, INDIA

SRI RAAJA RAAJAN

COLLEGE OF ENGINEERING AND TECHNOLOGY

(APPROVED BY AICTE, NEW DELHI & AFFILIATED TO ANNA UNIVERSITY, CHENNAI.)
146/14B1, Amaravathi Village, Amaravathiputhur Post,
Karaikudi -630301, Sivagangai Dt, Tamilnadu

Website: www.sriraajaraajan.in. E - Mail: srrcet2010@gmail.com. Ph: 04565-234230

Beyond the Campus Environmental Promotion activities

COLLEGE OF ENGINEERING AND TECHNOLOGY

(APPROVED BY AICTE, NEW DELHI & AFFILIATED TO ANNA UNIVERSITY, CHENNAL)
146/14B1, Amaravathi Village, Amaravathiputhur Post,
Karaikudi -630301, Sivagangai Dt, Tamilnadu

Website: www.sriraajaraajan.in. E - Mail: srrcet2010@gmail.com. Ph: 04565-234230

REPORT

On March 16, 2022, SRRCET organized a tree-planting ceremony. The primary goal was to finish planting 200 seedlings. The major guest of this event was our college's academic adviser, who was invited in order to support the college's efforts to emphasize the value of tree planting. Just after the morning assembly, at around 10 a.m., the tree planting programme began. The principal and the academic advisor planted the first tree at our campus. Around 100 saplings were distributed to students from various classes to plant throughout the campus, and the remaining seedlings were planted by faculty members in sadayangadu. The principal delivered lecture on the importance of trees and the event ended with vote of thanks delivered by Dean of our college.

TREE SAPLING

SRI RAAJA RAAJAN

COLLEGE OF ENGINEERING AND TECHNOLOGY

(APPROVED BY AICTE, NEW DELHI & AFFILIATED TO ANNA UNIVERSITY, CHENNAL)
146/14B1, Amaravathi Village, Amaravathiputhur Post,
Karaikudi -630301, Sivagangai Dt, Tamilnadu

Website: www.sriraajaraajan.in. E - Mail: srrcet2010@gmail.com. Ph: 04565-234230

REPORT

A very auspicious tree plantation programme was organized by our Sri Raaja Raajan College of Engineering and Technology (SRRCET) on 05.09.2020. Nearly 40 students to create an awareness regarding climate change and it adverse effect on us. A range of 200 plants were planted in the visalayankottai. To create an awareness about sapling trees. We as a college pledged to plant as many trees as possible near our areas so as to create a very healthy environment and contribute in minimizing the climatic changes. We hope that everybody plants a tree in their lifetime & contribute in conserving the nature.

TREE PLANTATION

Sri Razja Razjan College of Engg. & Tech. Amaravathipudur, Karaikudi - 630 301 Sivagangai Dist. Tamil Nadu